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Optical emissions in a sonoluminescing bubble

T. W. Chen, P. T. Leung, and M.-C. Chu
Department of Physics, The Chinese University of Hong Kong, Hong Kong, China

~Received 14 March 2000!

We study how the mechanism of spontaneous decay of atoms~or molecules! in a sonoluminescing bubble
~SLB! can be affected by the high density and high temperature environment resulting from the rapid collapse
of the gas bubble immediately prior to light emission. We present a detailed study of the density of states of
photons in multiple-layered spheres, which mimic various stages of a SLB. In particular, we found that the
spontaneous decay rate could be strongly enhanced in the presence of a thin plasma shell inside the bubble,
which was predicted recently in numerical hydrodynamic simulations of a SLB.

PACS number~s!: 78.60.Mq, 42.50.Ct, 42.50.2p, 47.55.Dz
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I. INTRODUCTION

Sonoluminescence~SL! is the phenomenon by which
gas bubble in water~or other liquids! is driven to oscillate
and glow by external acoustic waves. This phenomenon
been known for over half a century@1,2#; however, there has
been a revival of interest in the subject since direct exp
mental observations of stable single bubble sonolumin
cence~SBSL! became possible in the early 1990s@2–7#. The
conversion of sound into light energy in SL represents
1012-fold concentration of energy@2#, which bears obvious
implications on possible technological applications in che
istry and materials science@8#. Many remarkable and intrigu
ing physical phenomena~or models! related to SBSL have
been proposed, such as shock wave formation@9–15#, recti-
fying diffusion @16#, nuclear fusion@10,11#, and proton tun-
neling @17#.

In a SL experiment@2,5,18–26#, a gas bubble is trapped a
the antinode of a standing ultrasound wave of freque
around 25 kHz in a partially degassed liquid, typically wat
Under a proper driving pressure, ranging from 1.15 to
atm, the bubble grows to a maximum size of about 50mm
in radius, and then collapses rapidly to a minimum size
about 0.5 mm in radius, at which a flash of light with a
intensity of the order 1–10 mW~a total energy of
105–106 eV) could be observed@2#. The pulse width of the
flash measured ranges from 40 to 350 ps@27#. This is even
shorter than the typical time scale of the spontaneous de
of atoms~or molecules! in free space, and is one of the mo
salient features of SBSL. The spectrum observed resem
that of black-body radiations. It is continuous and does
exhibit any line~or band! structure, regardless of the types
gas used in the experiments@2,20#. It also shows a near
exponential falloff with increasing wavelengths~to 800 nm!,
and a broad maximum at short wavelengths.

The time dependence of the bubble radius has been m
sured using light scattering techniques with a resolution
less than 10 ns@5,18,19,25#. For a bubble initially doped
with 1% of argon, it was observed that at about 10 ns bef
the bubble attained its minimum radius and prior to the em
sion of the flash, the bubble collapsed with a speed m
than four times the ambient speed of sound in the gas@26#.
As a consequence of the rapid collapse, shock waves
develop inside the bubble, as predicted in some numer
PRE 621063-651X/2000/62~5!/6584~13!/$15.00
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simulations@9–13#. Various models based on shock wa
related mechanisms have been proposed to explain
@9–15#. For example, recent numerical simulations show
that a thin plasma shell is likely to develop during the fo
mation of shock waves@15#. However, it is also generally
believed that regions of high density and high temperat
exist during the collapsing phase of a sonoluminesc
bubble~SLB!, even in the absence of shock waves@12,13#.

A natural attempt to account for the SL flash is based
blackbody radiation. By matching the spectra obtained
experiments with the theoretical spectrum of a blackbo
the temperatures of the glowing gas are estimated to b
the order 104–105 K @2,20#. Such a high temperature coul
be achievable when a SLB collapses to its minimum s
@12,13#. In fact, a SL model incorporating the blackbod
radiation emission mechanism and photon-absorption p
cess was recently proposed, and it nicely reproduced the
served parameter dependences of the pulse width and
spectrum of the light pulses@28#.

However, it usually takes several nanoseconds for exc
atoms~or molecules! to decay via the spontaneous emissi
of radiation. The lifetime is too long compared with the o
served SL pulse widths. Hence other, more sophistica
deexcitation processes, such as radiative recombination
diative electronic transitions, radiative rotational or vibr
tional transitions, bremsstrahlung, or even collision-induc
emission, have been invoked@29#. Electron-ion bremsstrah
lung is probably the most promising among these mec
nisms, yet it is still far from definitive@29#. On the other
hand, there have been several studies that relate SL to
generation of photons by the motion of the bubble wall se
rating the two phases~water and gas! in a SLB @30#. How-
ever, the power derived from this model is much smal
than the experimentally observed values in SL@2#.

In order to understand the emission mechanism of SB
we propose to study how the mechanism of optical emiss
could be affected by the unusual environment developed
SLB. There are several important physical factors that
worthy of remark. First, the minimum size of a SLB is com
parable with optical wavelengths. However, in most of t
radiative processes considered previously, the finite-size
fect of the bubble was neglected. In other words, the the
of radiative processes in extended space was used to dis
optical emission in a micrometer-sized SLB. It is not obvio
6584 ©2000 The American Physical Society
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PRE 62 6585OPTICAL EMISSIONS IN A SONOLUMINESCING BUBBLE
that this effect is negligible. Second, regions of extrem
high densities and high temperatures are formed insid
SLB during its collapsing phase. Thus the bubble is hig
inhomogeneous, and light waves generated from its inte
would be scattered. Third, as mentioned above, a pla
shell could possibly develop inside a SLB@15#, and the emis-
sion and propagation of electromagnetic waves could
strongly influenced by this plasma shell. In particular, t
degree of ionization of the plasma and its plasma freque
are crucial factors determining the properties of the syste

In this paper we investigate the influences of the abo
mentioned factors on the process of spontaneous emissio
is unlikely that spontaneous emission alone can explain
physical observations in SL, yet it serves as a simple mo
to illustrate the interplay between the radiative processes
the unusual environment existing in a SLB. It is well know
that when an atomic system is placed in a small cavity,
decay rate of the system will be modified~enhanced or in-
hibited! owing to the changes in the density of states
photons, which is a measure of the spontaneous decay
according to the Fermi golden rule@31–33#. Physically
speaking, whereas the fields are uniform in an extended
space, the presence of the cavity redistributes the strengt
the fields, so that they are stronger at some points
weaker at others. Therefore, atoms at different locations m
experience enhancement or inhibition in their spontane
emission rates. For example, enhanced transition rates
been observed and reported for atoms in micrometer-s
dielectric spheres@34#, which are of about the same size
the SL bubbles.

As a direct consequence of the rapid compression i
SLB, the gas density and the refractive index inside
bubble are strongly inhomogeneous. Hence it is likely t
the electromagnetic fields would be distorted, leading to n
trivial effects on the process of spontaneous emission. In
paper, we will present a detailed study of the density of sta
of photons in spheres with multiple layers of different refra
tive indices, mimicking various stages of a SLB. In partic
lar, we show that the decay rate could be strongly enhan
in the presence of a thin weakly ionized plasma shell ins
the bubble, the existence of which was predicted recentl
numerical simulations of a SLB as a result of shock form
tion @15#. The time scale of shock-wave formation is of te
of picoseconds, which is comparable to the duration of li
pulses observed in SL. Thus our discovery suggests tha
morphology of the plasma shell, as well as its compositi
might be an important ingredient of the light-emittin
mechanism in SL.

The organization of this paper is as follows. In Secs
and III, we present the theory of normal mode expansion
quantization of the electromagnetic~EM! fields in a dielec-
tric sphere embedded in another dielectric medium. In S
IV we then discuss the interactions between the EM fie
and an atom inside the sphere. We calculate the decay
of this system with the golden rule approximation, and sh
that they are proportional to the density of photon sta
Generalization to multilayered spheres is carried out in S
V. We present a systematic and detailed study of the
fields in a multilayered spherical cavity, and discuss the
pendence of these fields on various parameters character
the system. The tools we developed in previous sections
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then used in Sec. VI to calculate the EM fields in a multila
ered SL bubble. Results from numerical hydrodynamic sim
lations @12,13# suggest that two scenarios, the emergence
compressional waves and shock waves, are of particula
terest. In Sec. VII, we present results showing that the e
tence of a thin plasma shell, as induced perhaps by a sh
wave@15#, gives rise to a large enhancement in the EM fie
and hence the spontaneous transition rates, which might
a crucial role in the phenomenon of SL. We summarize
main results and their implications in Sec. VIII.

II. NORMAL MODES OF EM FIELDS
IN SPHERICAL GEOMETRY

Consider the EM field inside a dielectric sphere char
terized by the dielectric constante(r )5n2(r ). Hereafter we
shall assume thate(r ) is spherically symmetric, and hence
depends on the radiusr only. The fields satisfy the Maxwel
equations@35#

“•@e~r !E#50, ~2.1!

“•B50, ~2.2!

“3E52
1

c

]B

]t
, ~2.3!

“3B5
e~r !

c

]E

]t
, ~2.4!

wherec is the speed of light in vacuum, and we also assu
that the magnetic susceptibilitym(r ) is equal to 1, as it is for
most nonmagnetic materials.

Let the vector and scalar potentials beA(r ,t), andf(r ,t),
respectively. In the absence of free charges and under
generalized Coulomb gauge condition,

“•@e~r !A~r ,t !#50. ~2.5!

Then it can be shown thatA(r ,t) satisfies the vector wave
equation

“3~“3A!1
e~r !

c2

]2A

]t2
50, ~2.6!

and f(r ,t)50. Hence the electric and magnetic fields a
given by

E~r ,t !52
1

c

]A~r ,t !

]t
~2.7!

and

B~r ,t !5“3A~r ,t !, ~2.8!

respectively.
To look for normal mode solutions to Eq.~2.5!, we fur-

ther assume that

A~r ,t !5Q~ t !Ã~r !, ~2.9!

and we thus obtain the equations
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“3@“3Ã~r !#2e~r !k2Ã~r !50, ~2.10!

d2Q~ t !

dt2
1v2Q~ t !50, ~2.11!

wherek5v/c.
The vector potentialA(r ,t) can then be expanded in term

of the transverse-electric~TE! and transverse-magnetic~TM!
spherical vector wave components,

A~r ,t !5(
klm

@qklm
(E) ~ t !uklm

(E) ~r !1qklm
(M )~ t !uklm

(M )~r !#,

~2.12!

whereuklm
(E) (r ) anduklm

(M )(r ) are the TE and TM solutions to
Eq. ~2.10!, respectively, given by

uklm
(E) ~r !5 f l

(E)~kr !X lm~u,f!, ~2.13!

uklm
(M )~r !5

i

e~r !k
“3@ f l

(M )~kr !X lm~u,f!# ~2.14!

for m>0, and

ukl2m
(l) ~r !5uklm* (l)~r !, ~2.15!

wherel5E(M ) for the TE ~TM! case, and

X lm~u,f![
~2 i r3“ !Ylm~u,f!

Al ~ l 11!
~2.16!

are the vector spherical harmonics. From Eq.~2.10!, it is
readily shown that the scalar functionw l

(l)(r )5r f l
(l)(kr)

satisfies the equation

d

dr Fr~r !
dw l

(l)~r !

dr G1r~r !Fe~r !k22
l ~ l 11!

r 2 Gw l
(l)~r !50,

~2.17!

wherer(r )51„e(r )21
… for the TE ~TM! case.

Consider a dielectric sphere of radiusa1 and dielectric
constante15n1

2, embedded in an ambient medium with d
electric constante25n2

2 as an example. It is readily show
from Eq. ~2.17! that

f l
(E)~kr !5a1

(E)hl
(1)~n1kr !1b1

(E)hl
(2)~n1kr !, r ,a1 ,

~2.18!

f l
(E)~kr !5a2

(E)hl
(1)~n2kr !1b2

(E)hl
(2)~n2kr !, r .a1 ,

~2.19!

f l
(M )~kr !5a1

(M )hl
(1)~n1kr !1b1

(M )hl
(2)~n1kr !, r ,a1 ,

~2.20!

f l
(M )~kr !5a2

(M )hl
(1)~n2kr !1b2

(M )hl
(2)~n2kr !, r .a1 ,

~2.21!

wherea j
(l) andb j

(l)( j 51,2) are constants to be determin
from the boundary conditions.

Matching appropriate boundary conditions atr 5a1, we
find that
a2
(E)5

in2x1
2

2
$W21

(E)@hl
(1)~n1x1!,hl

(2)~n2x1!#a1
(E)

1W21
(E)@hl

(2)~n1x1!,hl
(2)~n2x1!#b1

(E)%, ~2.22!

b2
(E)52

in2x1
2

2
$W21

(E)@hl
(1)~n1x1!,hl

(1)~n2x1!#a1
(E)

1W21
(E)@hl

(2)~n1x1!,hl
(1)~n2x1!#b1

(E)%, ~2.23!

a2
(M )5

in2
3x1

2

2
$W21

(M )@hl
(1)~n1x1!,hl

(2)~n2x1!#a1
(M )

1W21
(M )@hl

(2)~n1x1!,hl
(2)~n2x1!#b1

(M )%, ~2.24!

b2
(M )52

in2
3x1

2

2
$W21

(M )@hl
(1)~n1x1!,hl

(1)~n2x1!#a1
(M )

1W21
(M )@hl

(2)~n1x1!,hl
(1)~n2x1!#b1

(M )%, ~2.25!

wherex15ka1. In the above equations, we define the Wro
skians as

W21
(E)~ f ,g!5 f g82 f 8g, ~2.26!

W21
(M )~ f ,g!5

f g8

n2
2

2
f 8g

n1
2

1S 1

n2
2

2
1

n1
2D f g

x1
, ~2.27!

with 8[d/dx1.
The regularity of the solution at the origin leads to t

following relation:

a1
(l)5b1

(l)5
1

2
g (l). ~2.28!

It is also easy to verify that

ua2
(l)u5ub2

(l)u, ~2.29!

which is consistent with the law of energy conservation.
In order to define the normal modes of this system, wh

are essential for the formulation of a quantized field theory
perfectly conducting spherical shell is placed at a large d
tancer 5R. Eventually, we shall take the limitR→`. The
allowed values ofk (v) are hence discretized by the im
posed boundary conditions, which require that both the tra
verse component of the electric field and the longitudi
component of the magnetic field vanish on the surface of
metal sphere, i.e.,

Ei~R!50, ~2.30!

B'~R!50. ~2.31!

This is equivalent to imposing the conditions

f l
(E)~R!50, ~2.32!

d

dr
~r f l

(M )!uR50. ~2.33!
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Upon imposing these boundary conditions atr 5R, the
eigenfrequencies of the EM field normal modes can
found. For example, in the TE case,

vn lE[kn lEc5S n1
1

2D pc

n2R
2

c

n2R
dE~ l ,n!, ~2.34!

where n50,1,2, . . . is the radial quantum number, an
dE( l ,n) is a phase angle of order unity. Therefore, the f
quencies are spaced by

nv5
pc

n2R
1O~R22!. ~2.35!

With this expansion, the general solution of the vec
potential can be written as

A~r ,t !5(
n lm

qn lm
(E) ~ t ! f l

(E)~kn lEr !X lm~u,f!

1(
n lm

i

ekn lM
qn lm

(M )~ t !“3@ f l
(M )~kn lM r !X lm~u,f!#.

~2.36!

The electric and magnetic fields can be expanded similarl

E~r ,t !52
1

c (
n lm

H q̇n lm
(E) ~ t ! f l

(E)~kn lEr !X lm~u,f!

1
i

ekn lM
q̇n lm

(M )~ t !“3@ f l
(M )~kn lM r !X lm~u,f!#J

~2.37!

and

B~r ,t !5(
n lm

$qn lm
(E) ~ t !“3@ f l

(E)~kn lEr !X lm~u,f!#

1 ikn lM qn lm
(M )~ t ! f l

(M )~kn lM r !X lm~u,f!%.

~2.38!

Furthermore,a2
(E) anda2

(M ) can be deduced from the o
thonormal relation

1

4pc2ER
e~r !un lm

(l) ~r !un8 l 8m8
* (l8)

~r !dr5dnn8d l l 8dmm8dll8 ,

~2.39!

and the asymptotic forms of the Hankel functions, yieldi
the results

ua2
(E)u25ub2

(E)u25
2pn2c2k2

R
, ~2.40!

ua2
(M )u25ub2

(M )u25
2pn2

3c2k2

R
. ~2.41!
e

-

r

as

III. QUANTIZATION OF EM FIELDS
IN SPHERICAL GEOMETRY

The quantization of the EM fields in a spherically sym
metric system begins with the normal mode expansion
A(r ,t) @36#,

A~r ,t !5 (
n lml

qn lml~ t !un lm
(l) ~r !, ~3.1!

whereu(r ) are the mode functions of a general system a
the q’s are the generalized coordinates of the fields, wh
satisfy Eq.~2.11!. Note that

qn l ,ml~ t !5qn l ,2ml* ~ t !, ~3.2!

following directly from the reality ofA(r ,t).
The Lagrangian of the system, defined by

L5
1

8pE0

R

@e~r !E22B2#dr , ~3.3!

assumes the form

L5
1

2 (
n lml

@ q̇n lml~ t !q̇n lml* ~ t !2vn ll
2 qn lml~ t !qn lml* ~ t !#

~3.4!

by the orthogonality ofun lm
(l) (r ). Therefore, the conjugate

momentum ofqn lml is given by

pn lml~ t !5
]L

]q̇n lml

5q̇n lml* ~ t !. ~3.5!

As in Eq. ~3.2!, the conjugate momenta obey the relation

pn lml~ t !5pn l ,2ml* ~ t !. ~3.6!

In terms of these generalized coordinates and momenta
Hamiltonian of the system can be expressed as

H5 (
n lml

pn lmlq̇n lml2L, ~3.7!

5
1

2 (
n lml

@pn lmlpn lml* 1vn ll
2 qn lmlqn lml* #. ~3.8!

The generalized coordinatesqn lml can be expressed as
sum of two independent solutions

qn lml~ t !5A \

2vn ll
@an l ,2ml* ~ t !1an lml~ t !#, ~3.9!

following directly from the equation of motion~2.11!, with

an lml~ t !5an lml~0!e2 ivn llt ~3.10!

and

an lml* ~ t !5an lml* ~0!eivn llt. ~3.11!

Similarly, the conjugate momenta are given by
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pn lml~ t !5 iA\vn ll

2
@an lml* ~ t !2an l ,2ml~ t !#. ~3.12!

To quantize the EM field of the system, we impose t
following commutation relations on the generalized coor
nates and their conjugate momenta@36#:

@ q̂n lml ,q̂n8 l 8m8l8#5@ p̂n lml ,p̂n8 l 8m8l8#50, ~3.13!

@ q̂n lml ,p̂n8 l 8m8l8#5 i\dnn8d l l 8dmm8dll8 . ~3.14!

From the definitions of thea’s anda†’s, their commutation
relations follow immediately:

@ ân lml~ t !,ân8 l 8m8l8
†

~ t !#5dnn8d l l 8dmm8dll8 , ~3.15!

@ ân lml~ t !,ân8 l 8m8l8~ t !#5@ ân lml
† ~ t !,ân8 l 8m8l8

†
#50.

~3.16!

Note that thec numbersq’s, p’s, a’s, and a* ’s are now
promoted to operatorsq̂’s, p̂’s, â’s andâ†’s respectively. As
usual,âs and âs

† (s5$n lml%) are the annihilation and cre
ation operators of photons in thes mode, respectively. In
terms of these operators, the vector potential becomes a
operator and can be written as

Â~r ,t !5 (
n lml

1

A2\vn ll

@ ân lml~ t !un lm
(l) ~r !

1ân lml
† ~ t !un lm

(l)* ~r !#. ~3.17!

IV. FIELD-ATOM INTERACTION

For the purpose of illustration and simplicity, we first co
sider a two-level atom situated atr0 in a dielectric sphere o
radiusa1 and dielectric constante15n1

2 surrounded by an-
other uniform medium of dielectric constante25n2

2. The
Hamiltonian of the system is@36#

Ĥ5
1

2
\v0ŝz1(

s
\vsâs

†âs1Ĥ int , ~4.1!

whereŝz is the Pauli matrix,v0[k0c is the frequency dif-
ference between the two atomic levels, and

Ĥ int[2p̂•Ê~r0!, ~4.2!

with p̂ being the electric dipole operator of the atom.
The transition ratew can be calculated using Fermi

golden rule, which is valid if the interactions are sufficien
weak,

w5
2p

\2 (
s

u^gsuĤ intuu0&u2d~vs2v0!, ~4.3!

where ugs& represents the state in which the atom is in
lower energy level, and one photon is in modes, while uu0&
represents the state with the atom excited to its upper l
e
-

ld

e

el

and no photon. Thed function in Eq.~4.3! is the result of
Fermi’s golden rule, which states that all significant tran
tions conserve energy.

We define two matricesPi j andEi j by

Pi j 5^gu p̂i uu&^gu p̂ j uu&* , ~4.4!

Ei j 5
1

4p\v0
(

s
ei ,s* ej ,sd~vs2v0!, ~4.5!

whereei ,s represents thei th component of̂ suÊu0&, and the
subscriptsi and j can ber ,u, or f. Hence

w5
8p2v0

\ (
i , j

Pi j Ei j . ~4.6!

While Pi j depends on the details~strengths and orientations!
of the emitting atom,Ei j is a measure of the fluctuations o
the vacuum electric field, which can be strongly affected
the dielectric medium. The main objective of the prese
paper is to study howEi j , and hence the transition ratew,
can be modified due to the unusual environment~high pres-
sure and high temperature! encountered in a SLB.

Explicit expressions ofEi j can be obtained from simple
algebra using the facts that(s5(n( l ,m(l and in theR
→` limit, (n→(R/pc)*dvs . Using the results obtained in
Secs. II and III, we can show that~i! for r ,a1,

Err 5
R

16p3c\v0
(

l
l 2~ l 11!2~2l 11!

ug (M )u2 j l~n1k0r 0!2

n1
4k0

2r 0
2

,

~4.7!

Euu5
R

32p3c\v0
(

l
l ~ l 11!~2l 11!H ug (E)u2 j l~n1k0r 0!2

1
ug (M )u2

n1
4k0

2r 0
2 F r 0

d j l~n1k0r !

dr U
r 5r 0

1 j l~n1k0r 0!G 2J ,

~4.8!

Eff5Euu ; ~4.9!

and ~ii ! for r .a1,

Err 5
R

16p3c\v0
(

l
l 2~ l 11!2~2l 11!

3
ua2

(M )hl
(1)~n2k0r 0!1b2

(M )hl
(2)~n2k0r 0!u2

n2
4k0

2r 0
2

,

~4.10!
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Euu5
R

32p3c\v0
(

l
l ~ l 11!~2l 11!

3H ua2
(E)hl

(1)~n2k0r 0!1b2
(E)hl

(2)~n2k0r 0!u2

1
1

n2
4k0

2r 0
2 Ur 0

d

dr
@a2

(M )hl
(1)~n2k0r !

1b2
(M )hl

(2)~n2k0r !# r 5r 0
1a2

(M )hl
(1)~n2k0r 0!

1b2
(M )hl

(2)~n2k0r 0!U2J , ~4.11!

Eff5Euu ; ~4.12!

and~iii ! Ei j 50 for iÞ j . Note that in the above equationsEi j
consists of two independent contributions from the TE a
TM modes.

The spontaneous emission rate of a dipole is most ge
ally given by Eq.~4.6!. For example, if the dipole is in the
radial direction, then

w5
4p2v0

\
Prr Err . ~4.13!

It is convenient for us to normalize the emission rate
that in the extended vacuum, which is given by

wvac5
4p2v0

3

3\c3
, ~4.14!

where p5(( i Pii )
1/2 is the electric dipole strength. Henc

using Eq.~4.6!, the normalized emission ratewn[w/wvac is

wn5
6p2c3

v0
2

Err . ~4.15!

Similar expressions can be obtained for dipoles tangentia
the surface of the sphere, namely,

wn5
6p2c3

v0
2

Ett , ~4.16!

whereEtt[(Euu1Eff)/25Euu5Eff .
Figure 1 shows the transition rates as a function ofv0 for

a randomly oriented radiating dipole situated atr 0 /r 150.1
and 0.9 of a uniform bubble (n151) surrounded by wate
(n251.33). We note that the transition rates, given by

wn5
2p2c3

v0
2 ~Err 1Euu1Eff!, ~4.17!

are nonuniform and fluctuate slightly around unity. A sm
enhancement can be observed for some particular freq
cies, while, for others, the transition rate is inhibited. Nev
theless, we expect that for such an air bubble in water, wh
d

r-

y

to

l
n-
-
re

n1 is less thann2, the enhancement is never prominent for
frequencies, regardless of the location and the direction
the dipole.

However, the results are somewhat different when
consider the opposite case, wheren1 is greater thann2, e.g.,
a water droplet in vacuum or air. It is well known that ligh
waves propagating in a dense medium will be totally
flected at the interface between two media. Hence li
waves will be trapped inside the sphere of higher refract
index (n1 in the present situation! and form metastable
states, called morpholgy-dependent resonances~MDR’s!
@37#, at appropriate frequencies. These MDR’s can stron
alter the vacuum fluctuations of EM fields, and hence int
duce nontrivial effects on a radiating atom inside the sph
@32–34#. In order to have a glimpse of the effects of the
MDR’s on the transition rates, in what follows we study
simple case withn151.33 andn251.00. In Fig. 2, the ra-

FIG. 1. Normalized emission rate of a dipole inside a gas bub
embedded in water, vs the transition frequency. The solid
shows the enhancement experienced by a dipole placed nea
boundary of the bubble, atr 050.9a1, where r 0 and a0 are the
distance of the dipole from the center and the radius of the bub
respectively. The dotted line shows that of a dipole placed near
center, atr 050.1a0. No significant enhancement is observed
both cases.

FIG. 2. Normalized emission rate for a dipole near the surf
of a water droplet in air (r 0 /a150.9). Sharp enhancement due
MDR’s are observed, but a spectral averaging reduces the enha
ment to the order of 1. The horizontal line shows the spectral
erage.
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diation rate for a dipole near the surface (r 0 /a150.9) is
plotted againstka. We find that the transition rate is mildl
enhanced for some particular frequencies and inhibited
others, which is similar to the results for an air bubble. Ho
ever, there are also many sharp spikes in Fig. 2, indica
strong enhancement at certain frequencies. Physically sp
ing, these frequencies correspond to eigenfrequencie
MDR’s, whose lifetimes are inversely proportional to th
widths of the respective spikes. As shown in Fig. 3, the
hancement is particularly pronounced for dipoles close to
interface, and is suppressed for dipoles located near the
ter. This can be understood as follows. Total internal refl
tion can take place only when the incident angle exceeds
critical angle, and hence photons~or light waves! reflected
from the interface are confined to a region close to the in
face. As a result, the fields there will be stronger than t
near the center. We also note that the transition rate a
function of radius at the resonance frequencies of MDR’s
discontinuous across the interface for the TM modes, refl
ing the discontinuity in the normal component ofE there; for
the TE MDR’s, conversely, the transition rate remains c
tinuous.

For such a system to have marked enhancement in
visible range of the emission spectrum at the MDR frequ
cies, its radius should be of the order of several micromet
because our results show that the resonance effect is

FIG. 3. Spatial dependence of the normalized emission rate f
TE mode (ka1538.896,l 546) and a TM mode (ka1538.525,l
545), at resonance frequency. The enhancement is peaked a
boundary of the sphere, due to the localization of photons trap
by total internal reflection. The enhancement of the TE mode
continuous across the boundary, while that of the TM mode is
This is due to the discontinuity in the normal component of
electric field of TM modes across the boundary.
r
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weak for ka,10. As mentioned previously, the size of
SLB is also of the order of several micrometers, we theref
expect that the formation of MDR’s could be of relevance
the emission mechanism of a SLB. However, as total inter
reflection is an essential means to confine light waves ins
the system, it seems unlikely that MDR’s, especially tho
with small leakage rates and hence a strong enhancing ef
could be formed in a uniform bubble (n1'1) surrounded by
water (n2'1.33). It is only the extreme physical condition
generated in the collapsing phase of a SLB that give rise
MDR’s yielding strong enhancement. We shall discuss t
issue in Sec. V.

V. GENERALIZATION TO LAYERED SPHERES

Many theoretical and numerical studies on SL stron
suggest that in the drastic collapsing phase of a SLB,
density of air in a thin layer of the bubble could be as high
1000 times that under standard conditions@10–14,38#, i.e.,
almost the same as the density of water. Some of these s
ies even confirm the emergence of shock waves@10–14,38#
with very thin but dense shock fronts. More importantly, t
gas molecules~atoms! become potential light emitters unde
such high temperature. Moreover, under these condition
fraction of the molecules~atoms! inside may be ionized and
a thin plasma shell could be formed@11,14,15#. The differ-
ence in density and the formation of a thin plasma sh
could both contribute to the spatial variance of the dielec
constant of the bubble. In order to study the emission mec
nism in a SLB with a spatially varying dielectric constan
we consider, for simplicity, the spontaneous decay rates
molecules~atoms! in a multilayered sphere. We also no
that despite its high velocity, this shell can be conside
static when compared with an optical time scale, and he
our model is applicable.

The mathematics used to handle a multilayered spher
similar to that presented in Sec. IV, and a transfer ma
formalism will be developed to handle the reflections a
transmissions of waves at the interfacesr 5a1 ,a2 , . . . (a1
,a2,•••).

In the j th layer (j 51,2, . . . ) themode functions for the
two polarizations are given by

f l
(E)~r !5a j

(E)hl
(1)~njkr !1b j

(E)hl
(2)~njkr !, ~5.1!

f l
(M )~r !5a j

(M )hl
(1)~njkr !1b j

(M )hl
(2)~njkr !, ~5.2!

wherenj is the refractive index of the layer. For an interfa
separating two layers say, layer 1 and layer 2 atr 5a1, we
define the transfer matrices

a

the
ed
is
t.
T21
(E)5

in2x1
2

2 S W21
(E)@hl

(1)~n1x1!,hl
(2)~n2x1!# W21

(E)@hl
(2)~n1x1!,hl

(2)~n2x1!#

2W21
(E)@hl

(1)~n1x1!,hl
(1)~n2x1!# 2W21

(E)@hl
(2)~n1x1!,hl

(1)~n2x1!#
D , ~5.3!

T21
(M )5

in2
3x1

2

2 S W21
(M )@hl

(1)~n1x1!,hl
(2)~n2x1!# W21

(M )@hl
(2)~n1x1!,hl

(2)~n2x1!#

2W21
(M )@hl

(1)~n1x1!,hl
(1)~n2x1!# 2W21

(M )@hl
(2)~n1x1!,hl

(1)~n2x1!#
D , ~5.4!

whereW(E) andW(M ) are defined as in Eqs.~2.26! and~2.27!. By matching the boundary conditions atr 5a1 as sketched in
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Sec. II, and adopting the definitions of the transfer matrices, the incoming and outgoing wave amplitudes in the two la
be concisely related as follows:

S a2
(l)

b2
(l)D 5T21

(l)S a1
(l)

b1
(l)D . ~5.5!

To illustrate our method, we specifically consider a dielectric sphere with a central core and an outer layer with d
dielectric constants. The central core has a refractive indexn1 and a radiusa1, and the outer layer, with thicknessa22a1, has
a refractive indexn2. In other words,a2 is the radius of the whole sphere, which is embedded in an infinite dielectric me
with a refractive indexn3.

Direct application of the tranfer matrix theory at the interfacer 5a2 yields

S a3
(l)

b3
(l)D 5T32

(l)S a2
(l)

b2
(l)D , ~5.6!

where

T32
(E)5

in3x2
2

2 S W32
(E)@hl

(1)~n2x2!,hl
(2)~n3x2!# W32

(E)@hl
(2)~n2x2!,hl

(2)~n3x2!#

2W32
(E)@hl

(1)~n2x2!,hl
(1)~n3x2!# 2W32

(E)@hl
(2)~n2x2!,hl

(1)~n3x2!#
D , ~5.7!

T32
(M )5

in3
3x2

2

2 S W32
(M )@hl

(1)~n2x2!,hl
(2)~n3x2!# W32

(M )@hl
(2)~n2x2!,hl

(2)~n3x2!#

2W32
(M )@hl

(1)~n2x2!,hl
(1)~n3x2!# 2W32

(M )@hl
(2)~n2x2!,hl

(1)~n3x2!#
D , ~5.8!

andx25ka2.
Together with Eq.~5.5!, we have

S a3
(l)

b3
(l)D 5T32

(l)T21
(l)S a1

(l)

b1
(l)D . ~5.9!

Thus, by inverting the matrices, all unknown amplitudes can be expressed in terms ofa3
(l) andb3

(l) , whose amplitudes can b
determined from the normalization condition~2.39!, requiring

ua3
(E)u25ub3

(E)u25
2pn3c2k2

R
, ~5.10!

ua3
(M )u25ub3

(M )u25
2pn3

3c2k2

R
. ~5.11!

The phase difference can be evaluated from the regularity condition at the origin, which requiresa1
(l)5b1

(l)5 1
2 g (l). There-

fore, leaving alone an unimportant common phase factor, all coefficients can be solved from the above two matrix eq
This transfer matrix method could be used to handle spheres consisting of arbitrary numbers of layers. Another exa

will consider in this paper is a dielectric sphere with a central core with refractive indexn1 and radiusa1, and two outer layers
with refractive indicesn2 andn3 and thicknessesa22a1 anda32a2, respectively. The sphere is embedded in an exten
dielectric medium with a refractive indexn4. Following similar steps as sketched above, we show that the wave amplitud
each layer can be expressed in terms of those in the extended dielectric medium, i.e.,a4

(l) and b4
(l) . For example, the

following equation relates the wave amplitudes in the core toa4
(l) andb4

(l) :

S a4
(l)

b4
(l)D 5T43

(l)T32
(l)T21

(l)S a1
(l)

b1
(l)D , ~5.12!

where

T43
(E)5

in4x3
2

2 S W43
(E)@hl

(1)~n3x3!,hl
(2)~n4x3!# W43

(E)@hl
(2)~n3x3!,hl

(2)~n4x3!#

2W43
(E)@hl

(1)~n3x3!,hl
(1)~n4x3!# 2W43

(E)@hl
(2)~n3x3!,hl

(1)~n4x3!#
D , ~5.13!

T43
(M )5

in4
3x3

2

2 S W43
(M )@hl

(1)~n3x3!,hl
(2)~n4x3!# W43

(M )@hl
(2)~n3x3!,hl

(2)~n4x3!#

2W43
(M )@hl

(1)~n3x3!,hl
(1)~n4x3!# 2W43

(M )@hl
(2)~n3x3!,hl

(1)~n4x3!#
D , ~5.14!
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and x35ka3. Likewise, the normalization condition yield
the results

ua4
(E)u25ub4

(E)u25
2pn4c2k2

R
, ~5.15!

ua4
(M )u25ub4

(M )u25
2pn4

3c2k2

R
, ~5.16!

and the EM fields are in turn completely determined. In w
follows we apply our formulation developed so far to an
lyze the phenomenon of spontaneous decay in a SLB b
on multilayered SLB models motivated by numerical hyd
dynamic simulations.

VI. MULTILAYERED SLB MODELS

The extraordinary environments inside a SLB obviou
rule out any models based on homogeneous dielec
spheres, let alone their inability to provide significant e
hancements in the EM fields. Some numerical hydrodyna
models show the existence of compressional waves in v
ous stages of the evolution of the SLB, and even sh
waves, especially when the bubble approaches its minim
radius. In other words, it would be much more realistic
model a SLB as a multilayered dielectric sphere, instead
uniform bubble as discussed in Sec. IV.

From the results of numerical simulations performed
Cheng and co-workers@12,13#, shown in Fig. 4, the density
of the argon gas could reach the order of 1 g cm23 ~i.e.,
about the same as the density of water! inside the dense
region, while the gas outside could be much lower than
value. We will estimate the dielectric constant in the den

FIG. 4. Snapshots of the spatial profiles of pressureP and tem-
peratureT for an air bubble driven with a sound amplitude ofPa

51.35 atm.~a! Results with the van der Waals gas equation
state~VEOS! are shown atT1518 ps, T2520.1 ps,T3521 ps,
T4522.1 ps, andT5524 ps, taking the time at minimun bubbl
radius as zero.~b! Same as~a!, but with nitrogen gas equation o
state ~NEOS! and t15226.6 ps, t25223.9 ps, t35223.5 ps,
t45220.4 ps, andt55218.4 ps. The shock front moves inwar
toward r 50 at t1 and t2, and outward att4 and t5.
t
-
ed
-

ic
-
ic
ri-
k
m

a

y

is
e

region by the Clausius-Mossotti equation and, for simplici
assume the dielectric constant outside the dense region t
1. The Clausius-Mossotti equation reads@35#

hmol5
3

4pN S e21

e12D , ~6.1!

wherehmol is the molecular polarizability, andN the number
of molecules per unit volume. Consider a SLB of argon g
For argon at 0 °C and 1 atm, the refractive index at
sodium D line wavelength (5893 Å) is 112.83731024.
Assuming that the mass density of the dense region of ar
to be 1 g cm23, we find that the refractive index there
about 1.16.

From Fig. 4, we observe that at some stages of SL, co
pressional waves may develop inside the bubble. Here
consider a simplified model in which a SLB consists of
central core witha1 /a250.3 and a refractive indexn1
51.16, and an outer layer with thickness 0.7a2 and a refrac-
tive index 1. The normalized emission rate is plotted a
function of frequency in Fig. 5, from which we conclude th
for such a bubble, the enhancement is only of order un
regardless of the location of the dipole. Note the absenc
the sharp peaks corresponding to total internal reflect
which suggests that this effect is negligible because the r
of the refractive indices across the boundary, being 1.16
not large enough to produce significant MDR’s. In th
model, the gas inside the outer layer is assumed to be u
ordinary pressure and temperature, which is of course no
case in a real SLB. Numerical results in Fig. 4 show that
temperature and pressure in the outer layer are in fact v
high, of the order 104 K and 105 atm. However, taking this
into consideration, the refractive indexn2 estimated will be
larger than 1, and an even smaller enhancement is expe

Our conclusion is therefore that the changes in the refr
tive indices due to compressional waves do not give rise
strong enhancement of the spontaneous decay rate ins

f

FIG. 5. Normalized emission rate of a dipole inside a gas bub
with compressional waves, which has a dense core withn151.16
and radiusa150.3a2 (a2 is the radius of the whole bubble!; and an
outer layer withn251 . The ambient medium is water. The sol
and dashed lines represent the normalized emission rate in the
at r 050.29a2 and in the outer layer atr 050.7a2, respectively. In
both cases, no significant enhancement is observed.
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SLB. This conclusion is robust against errors in the estim
tion of the refractive indices, since even if we artificial
boostn1 up to 1.5, so that the reflection at the boundary
the core and layer is strong enough to produce MDR’s,
shown in Fig. 6, the enhancement is insignificant when
average over the frequency. Numerical simulations of hyd
dynamics also suggest that during the collapsing phase
SLB, a thin but dense shock fronts can emerge under ce
circumstances@10–14,38#. Our shock wave model is simila
to the compressional wave model, except that there is n
one more layer outside the core. The radii and refrac
indices of the core and the layers areai andni , respectively,
where i 51, 2, and 3 starting from the core to the out
layers, and the ambient medium is water, with refractive
dex n451.33. Once again, the refractive indices inside a
outside the shock front are set to be 1.16 and 1, respectiv
We have used the parametersa1 /a350.1 anda2 /a350.12
in our calculation to mimic the situation shown in Fig. 4~b!.
In other words, the thickness of the shock front is 0.02a3.

The spectrum of the normalized transition rates ins
various layers of our shock SLB are shown in Fig. 7, wh
is similar to that of the compressional wave model and d
not show any enhancement feature. Again, minor adj
ments in the refractive indices do not affect the enhancem
significantly.

In summary, the multilayered SLB configurations w
have studied, which are motivated by numerical hydro
namic results, only give a mild enhancement of the EM fie
inside the bubble. However, so far we have ignored the
fects of ionization on the refractive indices. When that
included, a strong effect is observed, as we shall discus
Sec. VII.

VII. PLASMA SHELL MODEL

Under the high temperature and pressure inside a SL
fraction of the molecules~atoms! may be ionized and a thin
plasma shell could be formed@11,14,15#. Other than the den
sity of dipoles, the degree of ionization of atoms~molecules!
is another factor that affects the refractive index. For m
substances, especially stable elements such as argon, t

FIG. 6. Same as in Fig. 5; however, the value ofn1 is artifically
increased to 1.5. The dipole is located atr 050.29a2 and 0.7a2. The
MDR peaks appear again due to the larger discontinuity in
refractive index at the boundary. However, after spectral averag
the enhancement is again reduced to the order of 1.
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usually ignored under ordinary conditions. However, wh
taken into account, as needed for the extraordinary co
tions inside a SLB, we will show that this effect is by n
means negligible, especially inside the shock front.

The dielectric constant in the plasma shell is given by@35#

e~v!5e02
vp

2

v2
, ~7.1!

wherevp is the plasma frequency defined by

vp
25

4pNee
2

me
. ~7.2!

Here e051.16, andNe is the number density of free elec
trons in the plasma, which can be estimated by the S
equations@28,39#

Ne
2

NAr
52S 2pmek

h2 D 3/2

T3/2e2I /kT, ~7.3!

where NAr , I, and T are the number density of argon, th
ionization energy of argon atoms, and the temperature of
shock front, respectively. Regarding the consistency with
merical and experimental results obtained so far@10–13,38#,
we have assumed that the SLB consists of pure argon,
the same mass density as that of water and temperatu
3104 K inside the shock. It is also assumed that high
ionizations of argon are negligible; hence,I 515.755 eV,
the first ionization energy of argon@40#. Our calculation

e
g,

FIG. 7. Normalized emission rate of a dipole inside a gas bub
with shock waves, which has a small central core, a thin interm
diate layer, and a thick outer shell, and is surrounded by water.
radius of the whole bubble isa3, the radius of the core isa1

50.1a3 and the thickness of the thin shell isa22a150.02a3,
wherea250.12a3 is the outer radius of the intermediate shell. T
solid line shows the normalized emission rate of a dipole in
central core atr 050.05a3. The dashed line represents that of dipo
in the intermediately layer atr 050.11a3, and the circled line shows
the corresponding value in the outer layer atr 050.5a3. In all the
situations, no enhancement is observed.
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gives a;30% ionization, which shows that the plasma is n
weakly ionized. From Eq.~7.2!, it is found that the plasma
frequencies fall inside the optical frequency range for typi
values of density and temperature in a SLB, which impl
that the refractive index could be very small in the sho
front. Hereafter, the value of the refractive index of th
plasma shell will be set to be 0.01 for simplicity, unle
otherwise specified.

In Fig. 8 we show the normalized transition rate vers
frequency for a dipole inside the core and the outerm
layer, and there is no enhancement in these regions.
versely, an enhancement of;20–30 in the optical range i
observed inside the shell, as shown in Fig. 9. We conjec
that the enhanced radiation by the atoms inside the pla
shell is the origin of SL. This enhancement is due to
contribution of the longitudinal part of the fields, which
discontinuous across the gas-plasma boundary, with a j
of 104 if n250.01. Contrary to MDR, which is a resonanc
effect, this enlargement of the electric field is independen

FIG. 8. Normalized emission rate of a dipole inside a gas bub
where a plasma shell has been developed. The refractive inde
the plasma shell is taken to be 0.01, and its radius is 0.1a3. Except
for the plasma shell, the model is exactly the same as that show
Fig. 7. The normalized emission rate for a dipole inside the cor
r 050.05a3 and in the outer layer atr 050.5a3 are shown, respec
tively, by the dashed and solid lines, with neither of them show
significant enhancement.

FIG. 9. Same as in Fig. 8; however, the normalized emiss
rate for a dipole inside the plasma shell is shown. Inside the pla
shell, significant enhancement is observed, contrary to the situa
depicted in Fig. 8.
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the frequency and hence gives rise to a uniform backgro
which can survive the frequency averaging.

A further investigation shows that the transition rate
side the shell may depend on several parameters in add
to the refractive indices. These include the thickness of
shell and its distance from the center, etc. In Fig. 10
compare the spectra at the center of plasma shells with
same thickness, but situated in different locations in a S
We conclude that there is stronger enhancement when
shell is farther from the center. Because the size of the S
is comparable to optical wavelengths, this represents the
incidence of the shell with the first peak of the field near t
boundary.

We also observe that the transition rate inside the she
very sensitive to the thickness of the shell. Figure 11 sho
the spectra at the centers of shells with various thicknes
located at a distance 0.1a3 from the bubble center. The pa
terns of the spectral lines are very similar, but their amp
tudes are magnified by a factor;5 when the shell thick-
nesses are halved.

le
of

in
at

g

n
a

ns

FIG. 10. Normalized emission rate of a dipole inside the plas
shell developed in a gas bubble. The thickness of the she
0.02a3, while its inner radius is 0.1a3 ~dash-dotted line!, 0.3a3

~solid line!, and 0.9a3 ~dashed line!, wherea3 is the radius of the
bubble. It can be observed that the emission rate increases wit
distance of the shell from the center.

FIG. 11. Normalized emission rate of a dipole inside the plas
shell developed in a gas bubble. The distance of the shell from
center is 0.1a3, while its thickness is 0.02a3 ~solid line!, 0.01a3

~dash-dotted line!, and 0.005a3 ~dashed line!, wherea3 is the radius
of the SLB. It is observed that the emission rate increases dr
cally with thinner shells.
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VIII. SUMMARY

To summarize, in this paper we proposed a model of S
as a multilayered dielectric sphere with a plasma shell. O
model is based on the strong evidences of the existenc
shock waves inside a SLB. We showed that while homo
neous spheres and layered spheres with compressional w
give insignificant enhancement to light emission in SLB
an enhancement factor in the spontaneous emission ra
order 100 can be achieved for atoms located inside a na
plasma layer where the dielectric constant is small. We c
jecture that this represents approximately the configuratio
a SLB when it is compressed to its minimum radius, char
terized by the presence of plasma within a thin shell s
rounding the core of the bubble. With this enhancement,
atoms inside the shell radiate with a shorter lifetime co
pared to that in vacuum, and this effect may explain
narrowness of SL pulses@21#. The spatially averaged en
hancement depends on the location of the shell, as well a
thickness. Generally speaking, the enhacement incre
with the distance from the shell to the core, and decrea
with its thickness. We also estimate the degree of ioniza
required to give this enhancement and the correspon
temperature, by using the Saha equation@28,39#. We find
that a strong degree of ionization;30% is required, which
is possible in a SLB at temperature;53104 K. This value
is inside the typical range of numerical and experimen
data obtained so far.

It is worth noticing that at higher temperatures, and the
fore stronger ionizations, the refractive index in the shell w
become negative, which means the shell is strongly abs
tive and dispersive. This interesting topic, namely, quant
optics in absorptive and dispersive media, is still open
exploration@41–43#. Though we have not considered it rig
orously in this paper, detailed studies on the quautum beh
ior of this absorptive system, are in progress, and the re
will be reported elsewhere.

The enhancement effect considered in the present pap
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a final state effect. That is, it affects radiative rates via
photon phase space factor. In addition to enhancing the s
taneous emission rate, it could influence other radiative p
cesses as well. For example, in a recently proposed
model that considered how the blackbody radiation spect
could be modified by the photon-absorption processes@28#,
both the emission and absorption mechanisms proved lik
to be affected by the formation of a plasma shell in a SLB.
addition, other de-excitation processes, such as radiative
combination, radiative electronic transitions, radiative ro
tional or vibrational transitions, bremsstrahlung, or ev
collision-induced emission, which have been invoked to
terpret the phenomenon of SL@29#, are also dependent on th
phase space structure of the emitted photons. The major
of our paper is primarily to show that the extreme physi
conditions achievable in a SLB, namely, high density, hi
temperature, ionization, and finite size could indeed aff
various light emission processes. At the first stage of an
haustive investigation, in the present paper we studied t
influences on the process of spontaneous emission,
showed that an enhancement factor of about 10–100 in
spontaneous decay rate is achievable in the presence of a
plasma shell. To compute the emission spectrum of a S
one has to consider all these factors, incorporating numer
fluid dynamics, plasma formation and radiation process
We are currently working along this direction, and releva
results will be reported in due course.
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